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Abstract: Embeddings of the standard model in type II string theory typically contain

a variety of U(1) gauge factors arising from D-branes in the bulk. In general, there is no

reason why only one of these - the one corresponding to weak hypercharge - should be

massless. Observations require that standard model particles must be neutral (or have

an extremely small charge) under additional massless U(1)s, i.e. the latter have to belong

to a so called hidden sector. The exchange of heavy messengers, however, can lead to a

kinetic mixing between the hypercharge and the hidden-sector U(1)s, that is testable with

near future experiments. This provides a powerful probe of the hidden sectors and, as a

consequence, of the string theory realisation itself. In the present paper, we show, using a

variety of methods, how the kinetic mixing can be derived from the underlying type II string

compactification, involving supersymmetric and nonsupersymmetric configurations of D-

branes, both in large volumes and in warped backgrounds with fluxes. We first demonstrate

by explicit example that kinetic mixing occurs in a completely supersymmetric set-up where

we can use conformal field theory techniques. We then develop a supergravity approach

which allows us to examine the phenomenon in more general backgrounds, where we find

that kinetic mixing is natural in the context of flux compactifications. We discuss the

phenomenological consequences for experiments at the low-energy frontier, searching for

signatures of light, sub-electronvolt or even massless hidden-sector U(1) gauge bosons and

minicharged particles.
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1. Introduction

Many extensions of the standard model (SM) contain hidden sectors that have no renor-

malizable interactions with SM particles. Notably, realistic embeddings of the standard

model in E8 ×E8 heterotic closed string theory as well as in type I, IIA, or IIB open string

theory with branes, often require the existence of hidden sectors for consistency and for

supersymmetry breaking.1

At the quantum level, hidden-sector particles will interact with SM particles through

the exchange of massive messengers that couple to both the hidden and visible sectors, and

this can lead to detectable traces of hidden sector physics. A unique window to hidden

sectors is provided by hidden Abelian gauge bosons. In fact, hidden sector gauge groups

1For reviews which emphasize the occurence of hidden sectors in the context of string phenomenology,

see e.g. refs. [1 – 4].
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often contain U(1) gauge factors which generically mix kinetically [5, 6] with the hyper-

charge U(1) of the visible sector, leading to terms in the low-energy effective Lagrangian

of the form

L ⊃ − 1

4g2
a

F (a)
µν F

µν
(a) −

1

4g2
b

F (b)
µν F

µν
(b) +

χab

2gagb
F (a)

µν F
(b)µν +m2

abA
(a)
µ A(b)µ, (1.1)

where a(b) labels the visible (hidden) U(1), with field strength F
(a(b))
µν and gauge coupling

ga(b). The dimensionless kinetic mixing parameter χab, appearing in front of the effective

renormalizable operator in eq. (1.1), can be generated at an arbitrarily high energy scale

and does not suffer from any kind of mass suppression from the messengers that induce it.

This makes it an extremely powerful probe of high scale physics; its measurement could

provide clues to physics at energies that may never be accessible to colliders.

The mass mixing term m2
ab in eq. (1.1) is, in the context of string theory, usually asso-

ciated with the Stückelberg mechanism of mass generation for anomalous U(1)s (see, e.g.,

refs. [7 – 12]). The m2
ab effects were examined recently in the framework of the “Stückelberg

Z ′ model” in [13 – 15] whereby a massive (typically O(TeV)) boson (which may also ki-

netically mix with the hypercharge) couples to the standard model particles directly via

such a mass mixing, allowing it to be produced at the LHC; the large mass accounts for

its current invisibility (see also refs. [16 – 21]).

Here, following earlier work of some of the current authors [22, 23], we will address

the effect and the generation of the kinetic mixing term χab. We shall propose searching

for truly hidden gauge fields which are anomaly-free and massless. In the presence of light

or massless hidden fermions, this may be detected thanks to the kinetic mixing generated

at loop level. This is a complementary string-motivated scenario, potentially providing

different information about the compact space of string theory which may be impossible

to ever obtain directly. An exhaustive study of the predicted size of kinetic mixing in

realistic compactifications of heterotic string theory has been performed in ref. [24]. Type

II models were considered in previous work [22, 23] where we examined the mixing in non-

supersymmetric string set-ups between branes and antibranes in large toroidal volumes

and suggested that the non-observation of kinetic mixing may be able to place bounds on

the string scale in more general scenarios, or alternatively may place a lower bound on

the kinetic mixing to be observed based on the currently favoured string scale. However a

systematic and rigorous study in the context of type II string models is still lacking, and

this is the goal the present paper pursues.

Why would one expect kinetic mixing to be of interest in the context of type II models?

Kinetic mixing appears in a Lagrangian when massive modes coupling to different U(1)s are

integrated out [5, 25]. In the type II context, hidden U(1)s arise as D-branes in the bulk that

have no intersection with the branes responsible for the visible sector. The heavy modes

that are integrated out correspond to open strings stretched between the visible and hidden

stacks of branes. This can also be understood in the closed string channel as mediation by

light or massless closed string (i.e. bulk) modes. The motivation for a comprehensive study

in type II theories therefore derives from the following general observations: in type II

string compactifications, hidden U(1)s are ubiquitous, and there is no reason to expect all
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of them to be anomalous and hence heavy. Furthermore, the Ramond sector on intersecting

D-branes always yields the massless charged matter fermions that could make the kinetic

mixing detectable.2

The type II models can be further subdivided into two classes depending on how

curved the compact space is supposed to be. First there are models in which the compact

space plays the role of a large quasi-flat bulk volume. These include the D-branes at

singularities (so called bottom-up) models [27] (in the context of type I string theory

a similar model-building strategy was employed in [28]). For the sake of simplicity we

will also place within this class models in which intersecting D6-branes wrap 3-cycles on

toroidal backgrounds [29], despite the volumes in this case being restricted to be rather

small. The second class of models are those in which the compact volume is significantly

warped and Randall-Sundrum [30, 31] like. In this class of models, which includes the

KKLT scenario [32, 33], the standard model branes are typically assumed to be located at

the bottom of a warped throat. Hidden branes may be present for a variety of reasons, such

as tadpole and/or anomaly cancellation in the former class, or “uplift” in KKLT scenarios.

In the present paper, we shall extend the discussion of refs. [22, 23] to consider set-ups

in both of these categories, involving supersymmetric and nonsupersymmetric configura-

tions of D-branes, both in large volumes and in warped backgrounds with fluxes. Our

analysis (beginning in the following section) will demonstrate that kinetic mixing between

visible and massless hidden U(1)s is an interesting possibility to search for in forthcoming

experiments. Clearly the issue of Stückelberg masses and kinetic mixing are related, so

one of the main aims of this paper will be to show how to disentangle them in the string

calculation. We will show using a variety of methods how both the kinetic mixing and

the Stückelberg mass mixing can be derived from the underlying type II string compacti-

fication. We will demonstrate by explicit example that kinetic mixing can occur without

Stückelberg masses in a completely supersymmetric set-up where we can use conformal

field theory (CFT) techniques. We will then develop a supergravity approach which allows

us to examine the phenomenon in more general backgrounds, where we find that kinetic

mixing is natural in the context of flux compactifications.

1.1 Review: detection of hidden-sector U(1)s and current limits

Before beginning the analysis, we would like to review the possible methods of detection of

hidden-sector U(1)s, and the current observational limits. The masses of the hidden-sector

photons and matter, and the kinetic mixing all come in to play, and because of this we

will here give as general a discussion as possible, in particular elucidating the experimental

differences in the possible detection of massless versus massive hidden U(1)s. Indeed, the

best way to search directly for the hidden-sector U(1) gauge boson (γ′) depends primarily

on its hitherto undetermined mass. For a mass in the range mZ ≈ 100 GeV . mγ′ . 1TeV,

precision electroweak tests can be used [16, 17] to set an upper limit χ . few × 10−2 on

the mixing parameter which will be only mildly improved by future measurements at the

2A similar situation arises arises in Gepner models. Here, massless extra U(1)s are typically accompanied

by massless hidden-sector matter charged under these extra gauge groups [26]
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Figure 1: Upper limits on the kinetic mixing parameter χ versus the hidden-sector U(1) gauge

boson mass mγ′ , from electroweak precision tests (EWPT) at LEP and future experiments at LHC

and ILC [18, 19, 15], from searches for deviations of the Coulomb law [40, 41], and from searches

for signatures of γ ↔ γ′ oscillations, exploiting, as a photon source, current and future laboratory

lasers (light-shining-through-a-wall (LSW) experiments) [35]3, future microwave cavities [36], or the

sun [37, 38].

high-energy frontier by LHC and ILC [18, 19, 15]. For smaller masses, the best limits arise

from searches for γ ↔ γ′ oscillations [34 – 39] and for deviations from Coulomb’s law (cf.

figure 1). Note however that, if the hidden-sector U(1) photons are massless (i.e. the gauge

symmetry is unbroken), then in the absence of light hidden matter there is no limit on

its mixing with hypercharge (because the effect can be reabsorbed by a redefinition of the

hypercharge coupling constant).

This is different if, in addition to the possibly light hidden-sector U(1) gauge bosons,

there are light hidden-sector matter particles which are charged under the hidden-sector

U(1) gauge symmetry. These could include for example a hidden-sector fermion h with a

bare coupling to A
(b)
µ given by

L ⊃ h̄A/(b) h. (1.2)

Such particles are known to show up as electrically minicharged particles, with their elec-

tric charge being proportional to the gauge kinetic mixing parameter [5]. Indeed, upon

3An alternative way to probe the region tested by the LSW experiments is to search for hidden-sector

photons coming from the sun using the Super-Kamionkande detector [39].
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Figure 2: Upper limits on the fractional charge ǫ = Qǫ/e of a hidden-sector fermion with mass mǫ.

Some of the limits only apply if there is also an ultralight hidden-sector U(1) gauge boson which

gives rise to the minicharge ǫ ∼ χ by gauge kinetic mixing with the photon. Laboratory limits arise

from laser polarization and light-shining-through-a-wall (LSW) experiments [35], from energy loss

considerations of RF cavities [42], from searches for the invisible decay of orthopositronium [43], from

Lamb shift measurements [44] and from searches at accelerators [45, 46]. Limits from cosmology

are due the non-observation of a significant distortion of the spectrum of the cosmic microwave

background (CMB) radiation [47] (for a limit exploiting the CMB anisotropy, see ref. [48]), due

to the apparent successfullness of standard big bang nucleosynthesis (BBN) [49], and due to the

observational requirement that the contribution of MCPs to the energy density should not overclose

the universe, Ω = ρ/ρcrit < 1 [50]. Finally, an astrophysical limit can be placed by energy loss

considerations of red giants [49].

diagonalizing the gauge kinetic term in eq. (1.1) by the shift

A(b)
µ → Ã(b)

µ + χA(a)
µ , (1.3)

the coupling term (1.2) gives rise to a coupling with the visible gauge field A
(a)
µ ,

h̄A/(b)h→ h̄Ã/(b)h+ χh̄A/(a)h, (1.4)

corresponding to a possibly small, non-integer charge with respect to the visible sector U(1),

Q
(a)
h = χgb ≡ ǫ e. (1.5)

Hence in a wide class of models one can also look experimentally for signatures of the

virtual or actual presence of electrically minicharged particles (MCPs). For low MCP
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masses, mǫ . 0.1 eV, the best current laboratory limits on the electric charge (cf. figure 2),

ǫ . few × 10−7 [35],4 are obtained from laser polarization experiments [51, 52], such as

BFRT [54], PVLAS [55, 56], and Q&A [57], where linearly polarized laser light is sent

through a transverse magnetic field, and changes in the polarization state are searched

for. Such changes would signal that some photons are being retarded by interactions with

virtual hidden-sector matter (the SM effect being too small to observe), or are being lost

by pair production of hidden-sector matter particles. Other laser experiments, exploiting

a light-shining-through-a-wall technique, such as ALPS [58], BFRT [59], BMV [60], Gam-

meV [61], LIPSS [62], OSQAR [63], and PVLAS [64] are sensitive to γ ↔ γ′ oscillations

which can be induced, even for massless γ′s, by the presence of virtual hidden-sector matter

in a magnetized vacuum [53]; current LSW data provide a limit of χ = ǫ . 2 × 10−6, for

mγ′ = 0 and mǫ . 0.1 eV [35]. A comparable laboratory limit, ǫ . 10−6, for mǫ . 1 meV,

can be inferred from the non-observation of an excessive energy loss due to Schwinger pair

production of minicharged particles in the strong electric fields in superconducting acceler-

ator cavities [42]. In the mass range from eV up to the electron mass, the best laboratory

limits, ǫ . 3 × 10−5, arise from searches for the invisible decay of orthopositronium [43],

while in the higher mass range the accelerator limits dominate; these, however, are rather

loose (cf. figure 2 and refs. [45, 46]). Bounds involving cosmology or astrophysics are seem-

ingly much better, notably in the sub-electron mass region (cf. figure 2). However these

limits, in particular those arising from BBN and energy loss constraints from red giants,

are more model-dependent and can be considerably milder in certain parameter ranges of

hidden-sector particles and interactions [65 – 67].

It is therefore reasonable to suppose that current and near future laser experiments have

the potential to detect the presence of a hidden massless or light U(1) gauge field coupled

to charged hidden light (. O(eV)) matter. There is nothing to forbid these in the hidden-

sectors of type II string theory; assuming a collection of intersecting branes at some location

of the compact space removed from the visible sector, there will be U(1) factors of various

masses and initially massless chiral multiplets. After supersymmetry breaking (presumably

gravity-mediated) the charged bosons acquire masses, leaving massless fermions that we

shall be interested in probing for; the charged bosons, we shall assume, acquire similar

masses to their visible counterparts and are thus unobservable by the laser experiments

previously mentioned. We shall thus assume no hidden Higgs mechanism acts to give masses

to the fermions, although this could be relaxed provided the masses are sufficiently small.

1.2 Overview: kinetic versus mass mixing in type II string theory

Before getting to the details of the different scenarios, we should make some general remarks

about kinetic mixing in string theory and outline the various computations we are going to

perform. We will also at this point clarify the interplay between kinetic mixing, Stückelberg

mass and anomaly cancellation.

4If there are hidden-sector photons in addition to the MCPs this bound may be somewhat weakened.

The most robust bound then comes from light-shining-through-a-wall experiments discussed below [53].
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Kinetic mixing can be understood in two ways: either as open strings stretching be-

tween separated branes, or as closed strings propagating between them. In principle, a

string CFT computation can give the mixing, as in the case of toroidal models [22]. How-

ever that approach is limited in the sense that it can only address what can be done using

CFT: it can only be used in models with backgrounds that are orbifolds or orientifolds of

tori. In order to give a more general discussion it is far more useful to develop the effec-

tive supergravity approach. This reproduces the dominant contributions to kinetic mixing

when computed as tree-level closed string propagation in toroidal compactifications, and

allows us to consider more general gravitational and/or flux backgrounds, depending on

the scenario in question. What the second method sometimes lacks in rigor, it more than

makes up for in generality.

We shall begin our discussion in earnest in the next section by considering kinetic-

mixing in the context of D-brane models in type IIB string theory using the CFT approach.

For example one can think of supersymmetric models based on an orbifolded torus with

an additional orientifolding. These supersymmetric models, first discussed in ref. [69], are

based on networks of wrapped intersecting D6-branes. They are a good starting point

because here calculations can be done using CFT, and this will help us to develop an

intuition for when kinetic mixing will occur and when it will not. This is a delicate question

because the kinetic-mixing diagram is also the diagram for the mass term mixing visible

and hidden U(1)s, and a single one-loop open string diagram contributes to both of the

terms in the Lagrangian of the form

m2
abA

(a)
µ A(b) µ +

χab

2gagb
F (a)

µν F
(b) µν , (1.6)

where mab is the aforementioned Stückelberg mass mixing, associated with anomalies and

their cancellation via the Green-Schwarz mechanism. A discussion of this can be found in

refs. [7 – 12], but the salient component with regards this work is that axion terms appear

in the (type II with gauge fields supported on D-branes) low energy effective action as

L4d ⊃
∫

R3,1

cF ∧ F + bF ∧ ∗F (1.7)

for four-dimensional scalar b and pseudoscalar c, supplemented by couplings

L4d
GS ⊃

∫

R3,1

C ∧ F +B ∧ ∗F (1.8)

for suitably normalised two-form fields B and C (note that C may be a higher-dimensional

form in the full string theory but only a two-form in four dimensions). Only the c, C fields

play a role in anomaly cancellation, by acquiring a gauge transformation c → c − ǫ as

A→ A+ dǫ (that the b,B fields do not contribute can be easily seen since the anomalous

variation of the Lagrangian is proportional to F ∧F and not F ∧∗F ), although Stückelberg

masses may also be generated by the B couplings. The L4d
GS couplings lead to a non-local

effective Lagrangian; this is in contrast to the Wess-Zumino mechanism that omits them,

yielding only local terms, but at a cost of violating unitarity at high energies [68]. When

massless, B,C are Poincaré dual to b, c; when massive, as we shall discuss later, these fields

– 7 –
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no longer play a role in anomaly cancellation or Stückelberg mass generation but may still

mediate kinetic mixing.

Massless U(1)s must have zero mixing, mab = 0, with all the other U(1)s in the theory.5

Since both of the terms in eq. (1.6) arise from the same diagrams, how can χab be non-

vanishing between two anomaly-free U(1)s when we must also have mab = 0?

The answer is that, in order to get a contribution to the Stückelberg mass, one has to

extract a 1/k2 pole from the appropriate one-loop integral (see eq. (2.4) below). From the

closed string point of view this corresponds to the Stückelberg mass only getting contribu-

tions from massless closed string modes. Such contributions are blind to the location in the

compact dimensions of the different sources. The non-pole contributions in this integral

give rise to χab. Importantly these contributions to χab are from both massless and massive

Kaluza Klein modes. The latter certainly do care about the location of the sources in the

compact dimensions, and so contributions to χab do not generally cancel even when the

contributions to mab do.6 A schematic example is shown in figure 3. The picture indicates

a localized standard model visible sector (on D6-branes, although the dimensionality is

irrelevant) and a hidden sector U(1) living on a brane together with the image brane in

an orientifold plane. The contributions from the brane to the Stückelberg mass mixing

between hidden and visible photons cancels that from its image. The same cancellation

does not occur for kinetic mixing, because the hidden brane and its image are separated.

To demonstrate the validity of this general idea, in section 3 we will explicitly compute

kinetic mixing in a supersymmetric and tadpole-free construction on a toroidal background,

where we can calculate it with a straightforward CFT treatment. If kinetic mixing occurs

between anomaly-free U(1)s here, then we can be sure that it can be decoupled from the

question of anomaly cancellation. We begin in section 2 with the generalities of the CFT

calculation. Then, in section 3, we present an anomaly-free toy model similar to those of

refs. [69, 29], but of course configured so as to have additional anomaly-free hidden U(1)s.

Following that, in section 4, we will demonstrate that the same result can be readily

computed using the effective supergravity field theory. As one might expect, the supergrav-

ity approach gives a more intuitive and general understanding which can then be applied to

alternative scenarios, where the global properties of the models are not so well understood.

In section 5, we consider a version of the Randall-Sundrum set-up which mimics the effect

of warping. From this we learn that kinetic mixing can be large in such models and is only

tamed by fluxes generating sufficiently large masses for the mediating closed string fields.

In particular the warping of the metric itself has no effect on the size of the kinetic mixing.

We then confirm this in section 6 by considering the more stringy set-up of U(1)s located

at the tip of a Klebanov-Tseytlin throat.

5Note that the converse is not true: absence of 4d anomalies does not guarantee absence of Stückelberg

masses because of possible 6d anomalies. Also mass mixing between U(1)s has been proposed in string

models as a means of supersymmetry-breaking mediation [70], but we will not consider this possibility here.
6From a more field theoretic perspective we can argue as follows. Stückelberg masses typically arise from

anomalies. Anomalies, however, do not care about the masses of the particles, i.e. the length of the stretched

open strings. In contrast, kinetic mixing depends on the masses of the particles going around the loop.

– 8 –
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Figure 3: Schematic illustration of the reason why kinetic mixing need not cancel between anomaly-

free U(1)s. We show contributions to photon mixing with hidden U(1)s in the presence of an

orientifold plane: Stückelberg mass-terms cancel, whereas kinetic mixing terms do not.

2. The CFT computation of kinetic mixing: generalities

We begin by reconsidering kinetic mixing in flat backgrounds where we can use CFT.

Technically the computation is identical to finding gauge threshold corrections (cf. also

refs. [71 – 73]), but with a trivial but crucial difference: the group-theoretical prefactors

are changed. Typically, an anomaly-free U(1) is composed of a linear combination of the

U(1)s coming from different stacks of branes. The different U(1)s will be labelled a, b and

the stacks will get labels i, j.7 The vertex operator describing U(1)a is given by

V a =
∑

i

cai V
a
i , (2.1)

where we sum over stacks i and the constants cai are chosen so that the corresponding U(1)

is anomaly free. The individual vertex operator on a given stack of branes i is given by (in

the zero-picture)

V a
i = λa

i εµ(∂Xµ + 2α′(k · ψ)ψµ)eik·X , (2.2)

where as usual εµ is the polarization vector, ψµ and Xµ are worldsheet fermions and bosons

respectively and λa
i is the Chan-Paton matrix on the stack i. The anomaly free U(1)s are

the linear combinations that obey

∑

i

cai tri(λ
a
i ) = 0 . (2.3)

7When orientifolds are present the images are counted as different stacks.
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The general expression for the amplitude we calculate is then (in the closed string chan-

nel) [7, 22]

〈V a
i V

b
j 〉 = 4(α′)2tri(λ

a
i )trj(λ

b
j)εµεν(gµνk2 − kµkν)

∫ ∞

0
dl

∫ 1

0
dx ek

µkνGµν

∑

ν

[

θ′′4(x)

θ4(x)
− θ′′ν(0)

θν(0)

]

1

(8π2α′)2
θν(0)

η3(il)
Zij

ν (il) , (2.4)

where the Green function is given by

Gµν(x) = −2α′gµν log

∣

∣

∣

∣

1

l

θ4(x)

η3(il)

∣

∣

∣

∣

, (2.5)

θ and η are the elliptic theta and Dedekind eta functions, and tri, trj denote that the trace

is to be taken over the individual branes inside a stack i or j. Zij
ν is the partition function

with spin structure ν, with the ij indices indicating that it is in general a function of the

displacements between the stacks. In the open string channel, this is a non-planar diagram

(i.e. with the two vertex operators placed on different boundary stacks).

The final result for kinetic mixing between say hypercharge Aa
µ and a hidden anomaly-

free U(1) Ab
µ contains a further i, j sum over all the relevant stacks contributing to each U(1)

as dictated by eq. (2.1). Note that if we are considering an orbifold model with fractional

branes where the branes are separated, only the non-fractional component contributes:

there can be no contribution from twisted sectors because a displacement between the

ends of the annulus diagram is not consistent with an orbifold twist.

The form for the amplitude in the on-shell/low-energy limit k2 → 0 will then be

〈V aV b〉 = m2
abA

a
µA

µ
b +

χab

gagb
k2Aa

µA
µ
b . (2.6)

Since the right hand side of eq. (2.4) explicitly contains the transverse structure

k2gµν − kµkν , the contribution to the mass must come from a 1/k2 pole of the integral. To

make the pole structure manifest we take the large l limit,

ek
µkνGµν = e−

1
4
2πα′k2l, (2.7)

while the rest of the integrand can be generically expanded as

∑

ν

[

θ′′4(x)

θ4(x)
− θ′′ν(0)

θν(0)

]

1

(8π2α′)2
θν(0)

η3(il)
Zij

ν (il) ∝ 1 +
∑

βij>0

N(βij)e
−πβij l, (2.8)

whereN(β) counts the multiplicity of closed-string modes at level β (which includes Kaluza-

Klein and winding modes). The first term corresponds to massless closed string states and

results in a 1/k2 pole, generating a mass-like term for the gauge fields. This term is i, j

independent. On the other hand, χab receives contributions from the second term which

does depend on the displacement between i and j.

As we have already stated, the sum of all contributions to the mass-term must be absent

between two anomaly-free gauge groups. These have been calculated in, for example,
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ref. [7], where the role of the mass-mixing term is elucidated as the Stückelberg mass

generated for anomalous gauge groups, which emerges when the gauge field “eats” the

relevant closed string modes. (In the case of D3-branes the modes that are eaten are NS-

NS B2 fields and R-R C2 fields, as will become apparent later.) At the same time, the

kinetic mixing parameter χ gets contributions from both the pole and the non-pole parts

of the integrand, with the latter corresponding to massive intermediate states with β 6= 0.

To give a specific illustration, consider the example of a single D3 brane and a D3

brane on a T 6 factorized into 3 complex 2-tori labelled by κ = 1 . . . 3:

Zij
ν (il)=

1

2
δ′ν

(α′)3(2π)6

8V6

θ3
ν(0)

η9(il)

∏

κ

∑

qκ,pκ

exp

[

− πα′l
2T κ

2 U
κ
2

|qκ+U
κ
pκ|2−2πi

Uκ
2

Im(zκ
ij(U

κ
pκ+qκ))

]

(2.9)

where Uκ, T κ are the complex and Kähler moduli, and zκ
ij is the complex separation vector

between branes i and j (scaled to be dimensionless; the true distance is 2πzκ
ij

√

T κ
2 /U

κ
2 ).

The above contains the expected massless mode whose effect can be seen in the l → ∞ limit:

〈V a
i V

b
j 〉 = tri(λ

a
i )trj(λ

b
j)εµεν(gµνk2 − kµkν)

∫ ∞

0
dl

(2πα′)4

4α′V6
e−

1
4
2πα′k2l (2.10)

{

1+
∏

κ

∑

qκ,pκ 6=0

exp

[

− πα′l
2T κ

2 U
κ
2

|qκ+U
κ
pκ|2− 2πi

Uκ
2

Im(zκ
ij(U

κ
pκ+qκ))

]}

(1+string mass terms).

We can see explicitly that only the first term, 1, in the curly brackets gives a zij inde-

pendent contribution. The second term depends explicitly on the positions zij . Since it

corresponds to massive closed string modes it contributes only to the kinetic mixing.

The reason for neglecting terms of order the string mass in (2.10) is the familiar

exponential damping of massive modes beyond their wavelength; the phase factor in the

above ensures that it is an accurate approximation to consider only the Kaluza-Klein

expansion of the tori. This implies that it is the closed string modes which heavily dominate

the process once the branes are separated by more than a string length, and moreover that

we should be able very accurately to reproduce the expression above using only field theory

as we shall do in section 4.

The expected mass-mixing between the U(1)a of the D3, and the U(1)b of the D3

coming from the massless modes is found to be

S ⊃
∫

d4x
1

α′
(2πα′)3

V6
Aa

µA
b µ . (2.11)

Note that in the D3-D3 system we also have a contribution from planar diagrams (i.e. with

both vertex operators placed on the same boundary in contrast with eqs. (2.4), (2.10)).

This generates gauge threshold corrections but more importantly renders any gauge group

carried by the brane or antibrane massive. This is a consequence of the uncancelled NS-

NS charges, i.e. that there is a nonzero cosmological constant. Hence, due to the volume

suppression of the masses, this could be a candidate for the Stückelberg Z ′ scenario; we

make some remarks on this in appendix A. Moreover there is kinetic mixing. We obtain
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for χ in eq. (1.1)

χab ≈ gagb
(2πα′)3

V6

∑

qκ,pκ 6=0

exp
[

∑

κ −2πi
Uκ

2
Im(pκzκU

κ
+ qκzκ)

]

∑

κ
α′

T κ
2 Uκ

2
|qκ + U

κ
pκ|2

(2.12)

where zk is the displacement between the brane and anti-brane in the k’th complex 2-torus.

Note that the kinetic-mixing term produced by the string amplitude, χab/gagb, actually

contains no factors of the gauge coupling (since the vertex operators carry none), and that

in addition χ depends on zk but the mass-mixing does not.

2.1 When can we have kinetic mixing between massless U(1)s?

We now wish to show that kinetic-mixing can occur between anomaly-free U(1)s. To begin

with, note that the amplitude is always proportional to the trace of the Chan-Paton factor

for the U(1)a gauge factor tri(λ
a
i ). This is also the factor for the mass-mixing term, and

so if we wish to avoid a massive gauge field, the total contribution for gauge group a must

vanish: if the U(1) charge is given by a linear combination of the trace U(1) charges on the

branes as Qa =
∑

caiQ
a
i , then we must have either

∑

i

cai tri(λ
a
i ) = 0 , (2.13)

or its equivalent for the hidden sector U(1)s. However if we are considering a U(1)a split

among separate branes, we cannot simply factor out
∑

i c
a
i tri(λ

a
i ) from the kinetic-mixing

term because the integrand depends on the positions (on zk
ij in other words).

As an example if we have a U(1)a split among separate branes, this can mix with other

U(1) fields. This can also be understood in field theory as the embedding of the U(1) as the

generator of a broken non-Abelian group; for example for two branes carrying naively a U(2)

when coincident, upon splitting there are two U(1) charges Q1 and Q2. The combination
Q1

2 + Q2

2 is anomalous, and corresponds to the U(1) in U(2) = U(1) × SU(2), while the

combination Q1

2 −Q2

2 is always non-anomalous and corresponds to the σ3 generator in SU(2).

If there is an orientifolding (which is generally required in order to cancel tadpoles),

then it is typically accompanied by a reflection R on the compactified coordinates which

generates orientifold planes and D-brane images. Then we automatically have pairs of

branes. Under the orientifold action, each brane i has an image i′, which carries the same

gauge group. The Chan-Paton matrices of the brane and its image are related by

λ′i = ∓γ−1
ΩRλ

T
i γΩR , (2.14)

where γΩR determines the action of the orientifold on the Chan-Paton matrices, and where

the minus (plus) sign is fixed by consistency of the model, and arises from the odd number

of worldsheet fermions in physical states imposed by the GSO projection. Since the relevant

charges come from tr(λi), however, the image branes have charges Qi′ = ∓Qi. For such

branes sitting on the orientifold we find a USp(2N)(SO(2N)) gauge group, for N branes

and N images, and note that the trace generator is in the former case projected out. When
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the branes are separated from the orientifold plane, however, while remaining in the same

homology class8 we automatically have a non-anomalous U(1). Again this non-anomalous

U(1) can be thought of as coming from a traceless generator of the symplectic group when

the branes are on top of the orientifold plane. Indeed, in the presence of an orientifold plane,

the mass-mixing between the U(1)i coming from the hidden brane gets contributions from

the brane and its image, which together will be proportional to tri(λi)+tri(λ
′
i) = 0 . Notice

that this is independent of whether the visible U(1) in question is itself anomalous: the

U(1) from an isolated D-brane does not get masses from any source if it is parallel to an

orientifold plane, but since the brane and its image are displaced it can still kinetically mix.

In fact, in a large volume compactification, the orientifold and the image can be removed to

large distances and the resulting kinetic-mixing would be dominated by the single brane. In

the closed string picture, the orientifolding projects out the massless modes that transmit

the mass-mixing. A general illustration of this scenario is given in figure 3.

3. Supersymmetric models

In order to confirm that kinetic mixing can indeed occur between anomaly free and massless

U(1)s we will now, as promised in the Introduction, examine self-consistent (i.e. tadpole-

free) global configurations that have non-vanishing kinetic mixing between mutually su-

persymmetric branes.

A convenient framework in which to construct supersymmetric models consists of a

simple orientifold with D6 branes and O6 planes in type IIA string theory, as reviewed

in ref. [29]. In principle, one would like to construct an N = 1 model similar to those

of ref. [69], but with hidden U(1)s. However the D6-branes wrap all the internal cycles

and typically they always intersect. Hence it is difficult to construct N = 1 models with

any hidden sector. Our main aim here is not to construct a realistic model, but rather to

provide a simple proof of concept in a completely supersymmetric set-up, for which N = 2

models will be sufficient. Such models correspond to dimensionally reduced 6-dimensional

N = 1 models, and so Stückelberg masses, if they are present, correspond to the Green-

Schwarz anomaly cancellation of 6-dimensional anomalies (the 4-dimensional anomalies in

N = 2 being of course zero).

Our general configuration is as follows: we choose the ten-dimensional spacetime to

be R
3,1 × T

2 × (T2 × T
2)/Z2, where the Z2 orbifolding is taken to act on the second and

third T
2 tori. The tori are all taken to be rectangular. Denoting the complex coordinates

on the compact space zi ∈ T
2
i , the orbifold involution acts as θ : (z2, z3) → (−z2,−z3).

The orientifold involution is then introduced as follows. It consists of world sheet parity

transformation Ω coupled with a non-holomorphic reflection R in the internal complex

cooordinates, R : zk → zk. The projections leave 4× 4 = 16 fixed points of the Z2 orbifold

(see figure 4), and 16 orientifold fixed planes (O6-planes), 8 for each of the orientifold

actions, ΩR, ΩRθ.

8Such as where there are translation or Wilson line moduli, or in a separate region of a Calabi-Yau

related to the original by an involution of the compact space. It is important that the quantum states be

related, otherwise the contributions to the gauge field mass between brane and image will not be equal.
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Figure 4: Supersymmetric configuration corresponding to the model in table 1. Solid lines denote

A stacks and dashed-dotted lines represent B stacks. Each of these stacks is separated into A1, A2,

and B1, B2 in the first torus only. The orientifold planes are represented by the dashed lines with

arrows. In the first torus, the two sets of orientifold planes are coincident. Finally the dots on each

of the last two tori show the orbifold fixed points (or more precisely planes).

This orbifold is a singular limit of the Calabi-Yau manifold T
2 × K3. Although we

can calculate exactly only in the orbifold limit, we can make completely general statements

about how the D6-branes should wrap in order to obtain kinetic mixing: we must place

our branes on bulk rather than exceptional cycles; the D6 branes must wrap two-cycles on

the K3, and a one-cycle on the T
2; thus both the closed and open string sectors preserve

N = 2 supersymmetry in four dimensions (such as prior to D-term SUSY-breaking in

split-supersymmetry models [74]).9

In the calculable orbifold case, we may derive rather general expressions for the subse-

quent kinetic mixing before presenting an explicit model (detailed in table 1 and figure 4).

We need only assume that the two massless gauge groups U(1)a and U(1)b come from two

parallel stacks of branes each, labelled A1, A2 and B1, B2. In order to not intersect, they

must be parallel to the orientifold plane in torus 1, but not lie upon it (cf. figure 4). We

denote the separations from the O6-plane in the torus 1 yAi
, and write δij ≡ yAi

− yBj
.

Note that it is possible to take A2 = A′
1 (or similarly B2 = B′

1), the image under the

orientifold, but we shall not require this. The charges for the massless combinations are

given by Qa = 1
NA1

QA1 − 1
NA2

QA2 =
∑

i
ca
i

NAi

QAi
, and similarly for Qb, where NAi

is the

number of branes in stack Ai, and QAi
, QBi

= ±1. The kinetic mixing is then given by

χ =
∑

ij

cai c
b
jQAi

QBj
χij = χ11 − χ12 − χ21 + χ22, (3.1)

9Despite the fact that the kinetic mixing can be calculated exactly only in the orbifold limit case, these

statements are valid more generally because the calculation of mixing in N = 2 depends only on the zero

modes, with the massive string excitations cancelling [75, 76] - and thus depends only on the intersection

form on the K3.
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stack N gauge group (n1,m1) × (n2,m2) × (n3,m3)

A 4 + 4 SU(2) × SU(2), QA1 , QA2 (1, 0) × (1, 1) × (1,−1)

B 4 + 4 SU(2) × SU(2), QB1 , QB2 (1, 0) × (1,−1) × (1, 1)

Table 1: Wrapping numbers for a very simple model with kinetic mixing. As usual, N counts

branes plus their orbifold images.

where [72, 77]

χij =
gagb

4π2
IAB



log

∣

∣

∣

∣

∣

θ1(
iδijL1

2π2α′
,

iT 2
1

α′ )

η(
iT 2

1
α′ )

∣

∣

∣

∣

∣

2

−
δ2ij

2π3α′
(L1)

2

T 1
2



 , (3.2)

where χij is the kinetic mixing between Ai and Bj ; and IAB is the number of intersections

between the branes in the non-parallel directions, L1 is the length of both branes in the torus

1 in which they are parallel, and finally T 1
2 is the Kähler modulus of torus 1, proportional

to the product of the radii in the case of rectangular tori. Note that the above can also

be calculated exactly by the effective supergravity techniques that will be introduced in

the next section, since supersymmetry ensures that all of the string mass excitations do

not contribute. Note also that it is crucial that the two stacks of branes preserve a mutual

N = 2 supersymmetry; if they only preserved N = 1 supersymmetry there would be no

dependence on the separation, and thus we could not separate mass mixing from kinetic

mixing, and if they preserved N = 4 the amplitude would cancel. This is, however, merely

a peculiarity of the very symmetric toroidal orientifold setup that we are using, and the

fact that we are using D6-branes.

It is easy to see that for generic values of the brane positions, and in the presence of

massless fermions, the induced mixing would violate the bounds on kinetic mixing by many

orders of magnitude. This is because, with wrapped D6-branes, one is unable to take a

large volume limit to try and dilute it, and in addition (when the cycles wrapped by the

branes and the bulk radii are all of the same order) dilution only occurs for p ≤ 5. It is

possible to give a mixing of the order of 10−6 or less by tuning the configuration: suppose

that (yB1
− yB2

) ∼ T 2
1 /L1 ≫ ls > (yA1

− yA2
), i.e. the branes are placed generically but

one splitting is much larger than the other, ensuring δij > ls (since for small δij the mixing

grows logarithmically). We then find

χ =
gagb

4π2
IAB

[

(yA1
− yA2

)(yB1
− yB2

)

π3α′
(L1)

2

T 2
1

]

+O(e−πT 2
1 /α′

). (3.3)

and thus (yA1
− yA2

) ∼ 10−6 l2s
L1

. Note that despite the fact that this distance is much

smaller than the string scale, the expressions are still valid since they are derived from the

complete CFT, and moreover such displacements are quite natural when considered from

the field theory perspective since they represent a Higgsing of the gauge group by giving a

vacuum expectation value to an adjoint scalar.
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As an extremely simple, explicit, example, we present the wrapping numbers for two

stacks of branes in table 1. The configuration including orientifold planes is shown in

figure 4.

The model has to satisfy a number of consistency conditions. First to preserve super-

symmetry, the radii of the tori are constrained. Denoting by θi the angle in the ith torus

between the branes and the O6ΩR-planes, we must have θ1 + θ2 + θ3 = 0; in the present

N = 2 case we have θ1 = 0, which leads to

U
(2)
2

m2

n2
+ U

(3)
2

m3

n3
= 0, (3.4)

where in the rectangular case the complex structure moduli U (i) = iU
(i)
2 = iR

(i)
2 /R

(i)
1 are

simply the ratio of torus radii. This condition may trivially be satisfied provided ni/mi is

the same for all the branes up to an overall factor. The tadpole cancellation conditions that

must be satisfied are as follows. First we ensure that the R-R (7-form) charge contribution

from the orientifold planes cancels that of the D6-branes. The homology class of a brane A

with wrappings (ni,mi) (where i labels the tori) is [ΠA] =
∑3

i=1 n
i[ai] +mi[bi], where the

canonical [ai] cycles correspond to the Re(zi) coordinate, and the [bi] cycles to Im(zi). The

images under the orientifold have homology [ΠA′ ] =
∑3

i=1 n
i[ai]−mi[bi]. The O6-planes cor-

responding to ΩR (henceforth denoted O6ΩR), have wrapping numbers (1, 0)×(1, 0)×(1, 0),

and hence homology [ΠOΩR
] = [a1]× [a2]× [a3], while those corresponding to ΩRθ (hence-

forth O6ΩRθ), have wrapping numbers (1, 0) × (0, 1) × (0,−1), and homology [ΠOΩRθ
] =

−[a1] × [b2] × [b3]. Their D6 charges are −4, so the tadpole cancellation condition is
∑

A

NA([ΠA] + [ΠA′ ]) = 4 × 8 ([ΠOΩR
] + [ΠOΩRθ

]) , (3.5)

which, assuming all the branes have m1 = 0, yields only two constraints on the wrapping

numbers:
∑

A

NAn
1
An

2
An

3
A = 16,

∑

A

NAn
1
Am

2
Am

3
A = −16 . (3.6)

These constraints are clearly satisfied by the model in table 1. (Supersymmetry then

ensures the cancellation of the NS-NS tadpoles.)

Kinetic mixing arises when the stacks of branes are displaced from the O6ΩR-planes

in the first torus. The counting goes as follows. Begin with N branes plus their orientifold

images on top of the orientifold plane, and passing through orbifold fixed points. As we

move away from the fixed points/planes we get images under both the orbifold and the

orientifold, so that we have a U(N/2) gauge group. By further splitting the stacks in

the first torus, we obtain two separate U(N/4) gauge groups, and by taking the trace

generator from each, we can form massless U(1) combinations Qa = 4
NA

(QA1 −QA2), Qb =
4

NB
(QB1 − QB2) as described in section 2.1 (where 4 counts orbifold images). Note that

Stückelberg masses arise for the orthogonal U(1) combinations, Qā = 4
NA

(QA1 +QA2) and

Qb̄ = 4
NB

(QB1 +QB2), as expected.
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stack N gauge group (n1,m1) × (n2,m2) × (n3,m3)

A1 6 SU(3), QA1 (1, 0) × (1, 1) × (1,−1)

A2 2 QA2 (1, 0) × (1, 1) × (1,−1)

B1 4 SU(2) (1, 0) × (0, 1) × (0,−1)

C1 2 QC1 (1, 0) × (1, 0) × (1, 0)

D 4 Qh (1, 0) × (1,−1) × (1, 1)

C2 2 QC2 (1, 0) × (1, 0) × (1, 0)

Table 2: Wrapping numbers for a slightly more realistic model.

The kinetic mixing for this particular model is given by 2χ, with χ as in equation (3.3);

note that there is no mixing between the branes and orientifold images, since B′ is parallel

to A (and thus preserves a mutual N = 4 supersymmetry, cancelling any mixing), but the

overall factor of 2 accounts for χA′

1B′

1
= χA1B1 etc. The above expression will be non-zero

provided that the y’s are not equal.

We can straightforwardly find more realistic (although still N = 2) models, in par-

ticular ones that have massless hypermultiplets (since this is what would be required to

detect the kinetic mixing). A tentative model is given in table 2, which contains the

standard-model like group factors. Again the branes must be separated from the orbifold

fixed points and orientifold planes. This time, the separations in torus one must be such

that yA1
= yB1

= yC1
, and yC2

= yD. This ensures that there is (non-chiral) matter

charged under the visible gauge groups, and also some charged (only) under the hidden

gauge group Qh. Note that stack D is split to U(1)h via two U(2)s in the second and third

tori; alternatively it could remain as a stack of two branes and two images, giving a hidden

massless U(1) and SU(2). Once more there is kinetic mixing between massless U(1)s; the

“hypercharge” is given by

QY =
1

3
QA1 −QA2 +QC1 . (3.7)

Note that, since branes Ci are parallel to the orientifold plane, they automatically carry

massless gauge groups, and also participate in kinetic mixing. (Because this is still an

N = 2 model, we will not go on to present the spectrum here.)

The above discussion is of course for a very simple model, and we would of course

like to build more realistic examples with N = 1 supersymmetry that can then be broken,

and genuine chiral matter charged under the correct gauge groups etc. . . However, if we

attempt to realise such models on a torus with an unresolved orbifold we encounter some

obstructions. Since we require the cancellation of masses but not of kinetic mixing, we

need branes with bulk components that are separated between the hidden and visible

U(1) factors in order that they are hidden, and also split into stacks so that they are

massless. Thus, given that the mixing in these models is generically large, and that it is

difficult (although not impossible) to obtain a truly hidden sector, such models are not

of particular interest. More importantly, however, in the current paradigm of LARGE

volume [78 – 80] or KKLT [32] models we should consider a collection of D6-branes or their

T-dual in terms of D3 and D7 branes with gauge fluxes realising the standard model gauge
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group and spectrum to be a mere local construction supported in some small region of a

larger manifold. It is from this perspective that we see that a truly hidden sector separated

from the visible one by several string lengths is entirely natural.

Of particular interest are models involving (anti) D3-branes that move in the bulk.

These are required for example in the KKLT scenario to uplift to a de Sitter vacuum [32, 33],

and may even play the role of an inflaton. Since the charges of the D3-branes can be

cancelled by O3-planes (which may be well separated from them), fluxes or D7-branes

wrapping cycles with non-trivial curvature, there should be no reason that they may not

exhibit kinetic mixing. If the D3-branes and the branes supporting hypercharge are located

at generic positions in some Calabi-Yau, the nett effect would be one of volume suppres-

sion similar to the flat space case [23]. However in many scenarios, such as KKLT, the

hypercharge is placed at a special position, for example the tip of a warped throat. One

expects that this could drastically alter the phenomenon of kinetic mixing: not only is the

background now warped, but the fluxes that cause the warping also give masses to the very

fields that mediate the kinetic mixing. In order to analyse these more general cases, we

shall have to go beyond the flat space approximation and develop a supergravity approach.

4. The supergravity calculation of kinetic-mixing

As a warm-up exercise for the supergravity approach, let us first demonstrate how one can

obtain the CFT results of section 2 using only the effective field theory. Masses mab have

been calculated in, for example, refs. [81, 82], but we shall extend this approach to the

computation of kinetic mixing χab. To do this, we consider the action of the brane and the

supergravity fields [83 – 86]:

SDBI = µp

∫

dp+1xe−Φ
√

− det g + 2πα′F +B (4.1)

≈
∫

dp+1xµpe
−Φ√−g− 1

4
µpe

−Φ√−g
(

(2πα′)2FµνF
µν +2(2πα′)FµνB

µν +BµνB
µν

)

,

SWZ = µp

∫

Dp

∑

q

Cq ∧ tr exp(2πα′F +B) ∧
√

Â(4π2α′RT )

Â(4π2α′RN )
, (4.2)

SR = − 1

4κ2
10

∫

d10x(− detG)1/2

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

, (4.3)

SNS = − 1

4κ2
10

∫

d10x(− detG)1/2e−2Φ|H3|2 , (4.4)

where Aµ is a gauge field, Cq are the R-R forms and B2 is the NS-NS 2-form and the

field-strengths are defined as

F = dA,

Fq+1 = dCq,

H3 = dB2,

F̃3 = F3 −C0 ∧H3,
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F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3,

∗10F̃5 = F̃5. (4.5)

Note that the 2-form F in the first equation above is the usual Fµν and should not

be confused with the R-R field strength F2 = dC1 in the second equation. Also µp =√
2π(4π2α′)−

1+p
2 is the brane tension, and 2κ2

10 = (α′)4(2π)7.

Already from the Dirac-Born-Infield (DBI) action (4.1) it is clear that the B-field can

mediate kinetic mixing. In addition, for Dp-branes, a p − 1-form Cp−1 couples in (4.2) to

the gauge fields, which can mediate between branes of the same dimensionality.

4.1 A simple case without fluxes

The CFT results for kinetic mixing, e.g., eq. (2.12) in the D3-D3 system on a toroidal

background, are applicable for backgrounds without flux vacuum expectation values. We

will now calculate the same results using the supergravity approach based on the DBI

action (4.1).

The vertices for the antisymmetric tensor Bµν and Aρ are

1

2
2πα′µpg

−1
s (kµgνρ − kνgµρ)δ(Σp)tr(λ), (4.6)

for a p-brane of worldvolume Σp and (compact) volume Vp−3. The propagator for a com-

ponent of Bµν , µ, ν ∈ {0, 1, 2, 3} is straightforward to write down: the diagonal part of the

propagator is

Gµν;ρσ(k4, y0, y1) = δµρδνσ
2g2

sκ
2
10

V6

∑

k6

exp [ik6 · (y1 − y0)]

|k4|2 + |k6|2
. (4.7)

Here k4 and k6 are the 4-dimensional and the transverse 6-dimensional momenta (w.r.t

µ, ν ∈ {0, 1, 2, 3} of Bµν), and y1−y0 is the 6-dimensional distance vector in the transverse

space. With the wavefunctions

Aa,b
µ (k, y) = εa,b

µ δ4(k − k4)δ
9−pa,b(y − Σpa,pb

) , (4.8)

the B-field induced contribution to the 2-point function of gauge fields is

〈Aa(k4)A
b(−k4)〉B = tr(λa)tr(λb)

1

2

(2πα′)3

V6

[

1

α′ ε
a · εb Vpa−3

(4π2α′)
pa−3

2

Vpb−3

(4π2α′)
pb−3

2

(4.9)

+(k2
4ε

a · εb − k4 · εak4 · εb)
∫

dpa−3ya

(4π2α′)
pa−3

2

dpb−3yb

(4π2α′)
pb−3

2

∑

k6

exp [ik6 · (yb − ya)]

α′|k6|2
]

.

This is the contribution from the B-field only. On the torus, there will also be contributions

from Cp−1-forms but only if pa = pb. In this case, for rectangular tori, one can show that for

brane-brane mixing the C-form contribution is equal and opposite to the B-contribution,

exactly cancelling it; while for brane-antibrane mixing they are equal in sign and magnitude,

– 19 –



J
H
E
P
0
7
(
2
0
0
8
)
1
2
4

simply multiplying the above by two. To reproduce the results of ref. [22], consider brane-

antibrane mixing on untwisted tori, so that in Neumann-Dirichlet directions the integrals

in the above become delta functions; for pa 6= pb we obtain

χab = gagbtrλatrλb
1

2π

l6s
V6

(Vpa−3Vpb−3)

lpa+pb−6
s

∑

ni

∏NDD
i=1 exp

[

2πi ni

Ri
(yi

b − yi
a)
]

∑NDD
i=1 n2

i l
2
s/R

2
i

, (4.10)

where l2s = 2πα′, and NDD is the number of Dirichlet-Dirichlet directions. For pa = pb and

parallel brane and antibrane the final result is twice the above formula. This agrees with

the results of [22] and for pa = 3 = pb with our earlier CFT-derived eq. (2.12) (for the

D3-D3 system in the present context of an untwisted toroidal background).

For more general models, where the compact manifold is not a rectangular torus, we

consider the action for a single component of Bµν which we shall denote φ, and neglect

the transverse modes (the calculation for the C-field being identical apart from a minor

modification to the vertices):

S =
1

2κ2
10

∫

d4x

(2π)4

∫

M6

e−2Φ

(

1

2
k2
4φ

2 +
1

2
d(6)φ ∧ ∗6d

(6)φ

)

. (4.11)

For a constant dilaton e−2Φ = g−2
s , the Green functions therefore obey

(k2
4 + ∆6)Gµν;ρσ(y0, y1) = δµρδνσ2κ2

10g
2
sδ(y1 − y0), (4.12)

where ∆6 = −(∗6d ∗6 d + d ∗6 d∗6) is the Laplacian on the compact manifold. To solve

the above, we may expand in terms of orthogonal, normalised, eigenfunctions φn of the

Laplacian (a Hermitian operator provided the manifold admits a Hermitian metric) with

eigenvalue αn, in terms of which the Green function is

Gµν;ρσ = δµρδνσ2κ2
10g

2
s

∑

n

bn(y1)φ
∗
n(y1)

αn + k2
4

φn(y0), (4.13)

where bn(y1) is the weight function. Clearly there is a contribution to the mass term only

when αn = 0, and in all the other contributions, to calculate the mixing we may set k2
4 = 0

in the denominator.

Since we are only interested in the fields with indices in the noncompact dimensions

(that will couple to the gauge field) the Green function is treated as a zero-form on the

compact space. This means that the zero modes of the Laplacian, being harmonic forms,

are in one to one correspondence with H0(M,R): for Calabi-Yau manifolds the only zero

mode is the constant solution φ0. This then implies that the result for the mass mixing in

eq. (2.11) applies to any Calabi-Yau and is not particular to the torus.

As a simple example, we apply this to the case of a product of tilted tori, where the

metric is ds2 =
∑3

κ=1(2π)2
T κ
2

Uκ
2
dzκdz̄κ and the periodicities are zκ ∼ zκ + 1, zκ ∼ zκ + Uκ.

We then have the Laplacian

∆6 = ∂i(
√
g6g

ij
6 ∂j) =

√
g6

Uκ
2

(2π)2T κ
2

∂κ∂̄κ. (4.14)
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The eigenfunctions are easily found to be 1√
V6

∏

κ e
2πipκxκ

e2πiqκyκ
, where zκ = xκ + Uκyκ

and xκ ∼ xκ + 1, yκ ∼ yκ + 1; the weight function is just
√
g6 so we have

Gµν;ρσ = δµρδνσ
2κ2

10g
2
s

V6

∑

pκ,qκ

∏

κ e
2πi
U2

Im(pκ(yκ
0−y1)U

κ
+qκ(yκ

0−y1))

∑

κ
1

T κ
2 Uκ

2
|qκ + pκU

κ|2
. (4.15)

Using the same vertices as before, we clearly obtain the same result as the string calculation

of kinetic mixing in the D3-D3 system found in eq. (2.12).

4.2 Inclusion of vacuum expectation values for fluxes

In type IIB model building it is usually required to include vacuum expectation values

(vevs) for the three-form fluxes in order to stabilise the moduli, and so in order to go

further, we need to incorporate this into our calculation of kinetic mixing.

Let us begin with a simple observation. The effect of the fluxes in some of the most

interesting cases, including KKLT models [32, 33], is that the metric is warped in the

vicinity of the standard model branes:

ds2 = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn. (4.16)

If we now restrict our attention to (anti) D3-branes then we can immediately see that,

since the coupling of the gauge fields to the antisymmetric tensor and the R-R two-form is

classically conformal, the kinetic mixing cannot depend upon the warp factor. Hence all

of the modification to the previous cases will derive from the Green function.

To proceed, we split the fields into B2 = B
(4)
2 +B

(6)
2 +B

(46)
2 (and similarly for the two-

form C2) where the superscripts are as follows: (4) indicates both are space-time indices,

(6) indicates both are internal, (46) indicates one of each. As we have mentioned, only

the components B
(4)
2 , C

(4)
2 can mediate the mixing, but now we wish to give a vev to the

components B
(6)
2 , C

(6)
2 . There may also be a vev for the five-form field F5, but this does not

contribute — on the other hand, the contribution of the two-form vevs to F̃5 are crucial.

Importantly, the vevs for B
(6)
2 , C

(6)
2 generate masses for the two-form fields B

(4)
2 , C

(4)
2 .

In fact, from eqs. (4.1)-(4.4) we can read off the kinetic and mass terms for B2,

S =
1

2κ2
10

∫

d4xd6y

(

|τ |2 + |C(6)
2 |2

)

1

2
|H(4)

3 |2 +
1

8
|B(4)

2 |2|F (6)
3 |2

+|τ |2|d(6)B
(4)
2 |2 +

1

8
|C(6)

2 ∧ d(6)B
(4)
2 |2 , (4.17)

while for C2 we have similarly

S =
1

4κ2
10

∫

d4xd6y

(

1 +
1

8
|B(6)

2 |2
)

|F (4)
3 |2 +

1

8
|C(4)

2 |2|H(6)
3 |2

+|d(6)C
(4)
2 |2 +

1

8
|B(6)

2 ∧ d(6)C
(4)
2 |2 . (4.18)

Thus fluxes generate masses for the two-form fields; from the string point of view we have

stabilised the moduli.
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Since the B
(4)
2 , C

(4)
2 fields are now massive this has an effect on the mixing of the U(1)

factors which these fields mediate.

Ignoring the non-compact dimensions’ kinetic terms, for a component φ of Cµν we have

L =
e−2A√g

2κ2
10

[

gmn∂mφ∂nφ+
1

8
|B(6)

2 ∧ d(6)φ|2 +
1

8
|H(6)

3 |2φ2

]

, (4.19)

where the last term is a mass of φ. We can estimate the magnitude of the effective φ-mass

by considering that H3 and F3 are defined as fluxes threading three-cycles [33],

1

(2π)2α′

∫

AK

H3 = mK ,

1

(2π)2α′

∫

BK

F3 = eK , (4.20)

where mK , eK are integers and K = 1 . . . h3. Thus we can estimate that

H3, F3 ∼ nl2s/V3, (4.21)

for some integer n and different three-cycle volumes V3. Provided that the cycles threaded

by the flux are larger than the string scale, we expect the second term in (4.19) to be less

significant, and φ should behave like a massive scalar with a characteristic length given by

L ∼ V3/(nl
2
s), i.e. the Green functions for the two-form fields behave as

Gµν;ρσ(y) ∝ δµρδνσe
−ynl2s/V3 . (4.22)

The resulting interaction is a “Yukawa type” interaction (whose exponential form derives

from the mass of the mediating scalar and has nothing to do with the warping). Thus

we expect to be able to probe much of the compact manifold; for V3 of O(100) we can

probe O(1000) string length distances. Note that the three-cycles that are threaded will

usually be different for H3 and F3. If one of them is much smaller (or the fluxes larger) as

is usually the case, then the corresponding two-form is subdominant in the generation of

kinetic mixing.

With the full dependence on fluxes to hand, we now proceed to consider specific warped

models where we can solve the equations exactly, in order to verify the general behaviour

anticipated above. We will consider two cases. The first in the following section is a sim-

plified Randall-Sundrum model which demonstrates that the kinetic mixing is independent

of the warping but depends only on the induced mass via the Green function. The second

model is the more “realistic” case of kinetic mixing in the Klebanov-Tseytlin throat.

5. Randall-Sundrum models

Randall-Sundrum (RS) models [30, 31] involve branes embedded in a slice of AdS5. They

may be considered as dimensionally reduced string models, or as legitimate phenomeno-

logical models in their own right. Since they involve a warped hidden dimension, they are

candidates for use as a toy for examining kinetic mixing in a non-trivial background, but
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still with hope of tractability. Some related work has been performed in [87 – 89], under the

assumption that the matter fields are not confined to the branes but have wavefunctions

extending throughout the fifth dimension. In their case, there were no additional fields,

since the wavefunction overlaps contributed to kinetic mixing. We shall rather consider a

more string-inspired scenario, where matter fields are confined to branes, and thus shall

introduce a string-inspired B-field. The metric for the model is taken to be

ds2 = e−2k|y|ηµνdx
µdxν + dy2, (5.1)

with k a parameter of the order of the Planck scale.

We shall consider the standard model brane to be a D3-brane at a position y = 0 in the

hidden dimension, and a hidden brane at some position y1 = πR. We shall suppose that

there is a massless U(1) field supported upon each, and shall then calculate the mixing.

(More generally, we could consider several branes with the U(1) split between them so as

to make non-anomalous combinations; the mixing would then be given by calculating the

mutual differences.) The Lagrangian of our model is taken to be

L = Lbulk + LD3 + L
D3

,

Lbulk =
M3

5

2g4

∫ −1

2
dB ∧ ∗5dB +

1

2
m2B ∧ ∗5B,

LD3 =
1

4g2

∫

D3

1

2πα′F ∧ ∗4B +
1

(2πα′)2
B ∧ ∗4B,

L
D3

= −LD3. (5.2)

Here we have introduced a B-field which will mediate the mixing. The coupling of the

B-field to the gauge field is specified by the Dirac-Born-Infeld action, but we should point

out that it is necessary to introduce three parameters into the model: the coupling of the

kinetic term M5, the mass-like parameter m and the string mass. If we imagine the above

to be derived from a string model, then we expect M5 to be related to Planck’s constant

and the volume of the compactification, and m to be determined by the fluxes; the string

scale however generally exists as a free parameter to be determined by experiment. It is

tempting to relate the M5 coupling to the parameters already extant in the RS scenario;

we shall examine the consequences of this later.

To calculate the mixing, as already mentioned we require the Green function, and thus

we derive the (very simple) equations of motion
[

e2k|y|ηαβ∂α∂β + ∂5∂5 −m2

]

B(4)
µν = 0 . (5.3)

However, from the above action we also find boundary conditions for the B-field at the

brane:

∂yB
(4)
µν − M4

s

M3
5

B(4)
µν |y=0,πR = 0 . (5.4)

Since we shall effectively be finding a one-dimensional Green function, these conditions

become important; if we were considering a higher dimensional model we could neglect

them and consider only the periodic boundary conditions of the compact space.
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5.1 Green functions in one dimension

The Green functions are straightforward to find for the above action, and the result is

a propagator that actually dies more rapidly than the equivalent RS solution at large

distances. The procedure for computing them is adapted from ref. [88]10 as follows. Let

∆G(y, y′) = δ(y − y′) (5.5)

define the Green function (note the loss of translational invariance due to the positions of

the branes). Now decompose it into “advanced” and “retarded” components:

G(y, y′) = θ(y − y′)G>(y, y′) + θ(y′ − y)G<(y, y′) , (5.6)

where G>, G< satisfy the homogeneous equation, and we must impose matching conditions

at y = y′. Writing this as

∂y(f(y)∂yG(y, y′)) − h(y)G(y, y′) = k(y)δ(y − y′) (5.7)

(with the redundancy deliberate) we obtain the continuity condition G>(y, y) = G<(y, y),

and

∂yG>(y, y) − ∂yG<(y, y) =
k

2f
, (5.8)

which sets the normalisation of the propagator. We now solve by separation of variables:

G<(y, y′) ≡ A<(y′)G̃<(y),

G>(y, y′) ≡ A>(y′)G̃>(y), (5.9)

to find the equations

A<(y)G̃′
<(y) −A>(y)G̃′

>(y) =
k

2f
,

A<(y)G̃<(y) −A>(y)G̃>(y) = 0. (5.10)

These allow us to find the A functions. Now, what we desire is G(y0, y1), where y0, y1 are

the coordinates of the branes. This is given by A<(y1)G̃<(y0), but these contain values at

the boundaries: our boundary conditions are

∂G̃<(y0) = rG̃<(y0),

∂G̃>(y1) = sG̃>(y1), (5.11)

and we then find the result

G(y0, y1) =
k

2f
(y1)

G̃<(y0)

G̃′
<(y1) − sG̃<(y1)

. (5.12)

10In fact, they derived the propagator for the Randall-Sundrum model at general positions in the bulk

at finite momenta. It is possible to extract the information we need from their equation (62) in ref. [88] by

setting the momentum and the parameter s to zero. However, it is actually easier and more transparent to

rederive the expression we need.
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This is particularly simple to solve numerically; we simply solve one homogeneous equation

for G̃<(y) with initial conditions

G̃<(y0) = C,

G̃′
<(y0) = rC, (5.13)

and the result is independent of the choice of C.

For the massive RS action, we can actually solve exactly to obtain

G(y0, y1) =
4g2

M3
5m

1

sinhmπR

1
(

1 − M8
s

M6
5 m2

) . (5.14)

This gives mixing

χ = gagb
32M4

s

M3
5m

1

sinhmπR

1
(

1 − M8
s

M6
5 m2

) . (5.15)

It is tempting to identify M5 with M from the existing RS parameters, where e−kπR =

MSUSY/MPl, (so πkR ∼ 16 log 10 ∼ 37), M2
Pl ≈ M3/k. We also make the assumption

that M8
s /(M

6
5m

2) is small. For concreteness, we will take an intermediate string mass of

Ms =
√
MSUSYMPl. This gives

χ ≈ gagb
32

log MPl
MSUSY

M4
s

M2
Pl

πR

m

1

sinhπmR

≈ gagb
32

37
× M2

SUSYπR

m

1

sinhπmR
. (5.16)

In the limit that mR≪ 1, we have

χ ∼ gagb ×
M2

SUSY

m2
. (5.17)

For gauge couplings of order unity, we see that values of m ∼ 104MSUSY leads to a mixing

that is observable in the near future. Comparing this to equation (4.21), if the flux mass is

related to a three-cycle in some compact space we should have typical length for a wrapping

cycle of O(102ls).

In the opposite limit, mR ≫ 1, one gets the expected exponential suppression due to

the non-zero mass:

χ ∼ gagb ×
M2

SUSY

m2
(mπR) e−mπR . (5.18)

Thus in RS backgrounds the kinetic mixing can reasonably take any value between zero

and the experimental limits, depending on the configuration.

6. Kinetic mixing on the Klebanov-Tseytlin throat

We now turn to an example of a Calabi-Yau manifold for which the metric is known, the

Klebanov-Tseytlin throat [90, 91]. This is a model of a warped throat region, as found

in KKLT models [32]. In this model, there are flux vacuum expectation values, but the
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back reaction of the flux upon the metric is not fully included. It can thus be seen as

an approximation to the Klebanov-Strassler solution [92], where we introduce by hand an

“infrared” cutoff rs to model the effect of removing the conical singularity; there is also an

“ultraviolet” cutoff r0 in both models to render the solution compact (so that rs < r < r0).

In the near-horizon limit it reduces to an RS model, and so we might expect a similar

exponential damping effect to occur here. Let us now see if this is the case.

Consider the metric on a general cone:

ds2 = h−1/2(r)ηµνdx
µdxν + h1/2(r)(dr2 + r2ds2M) (6.1)

where M is Sasaki-Einstein maifold. If we put a cutoff at some large radius r0 we can

consider the above to be part of a larger compact Calabi-Yau manifold (henceforth the

bulk). If we wish to use this as a particle physics model, we must then include fluxes to

stabilise the various complex structure moduli, which will warp the throat. Moreover, we

must consider how to embed the standard model on branes: we may have either D3-branes

at the singularity [93] (where we must generalise the above, with for example an orbifold

projection) or D3/D7 branes wrapping appropriate cycles elsewhere, either in the throat or

the bulk, with D3-branes at the tip [78 – 80] (which can uplift an AdS vacuum to a dS one).

Consistency of the model also requires orientifold planes, but they may be present either

at the tip of the throat or in the bulk, in the latter case necessitating an image throat.

The metric on the Klebanov-Tseytlin solution is (conventionally written in the Einstein

frame, defined by ds2Einstein =
√
gsds

2)

h(r) =
81(gsMα′)2 log r/rs

8r4

=
27(α′)2(2gsN + 3(gsM)2 log(r/r0) + 3(gsM)2/4)

8r4
,

where M is the number of fractional D5 branes wrapped on a compact S3 ⊂ T 1,1 at the

tip of the throat, and

ds2M = ds2T 1,1 =
1

9

(

dψ +

2
∑

i=1

cos θidφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin θidφ

2
i

)

. (6.2)

To calculate the kinetic mixing, we consider the dynamics of the R-R two-form,11 C
(4)
2 .

We start from the action (4.18), and make the assumption that in the throat region, the

radial Kaluza-Klein modes are much less significant that the longitudinal modes; this is

reasonable since the throat will be long and thin. Again writing φ for a component of Cµν ,

the action for the relevant term then reduces to

S =
1

4gsκ2
10

∫

d4x∂rφ∂rφ

(

|dr|2 +
1

8
|B(6)

2 ∧ dr|2
)

+
1

8
φ2|H(6)

3 |2 . (6.3)

11The dynamics of the B-field is complicated by its coupling to C
(6)
2 , which admits no globally smooth

vev due to the non-compact nature of the conifold. If desired, the same analysis can be performed in the

large distance limit, giving a similar, but crucially not identical, result.
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The vacuum expectation values for the fluxes are taken to be

F3 =
Mα′

2
ω3,

H3 =
3gsMα′

2r
dr ∧ ω2,

B2 =
3gsMα′

2
log(r/r0) ω2, (6.4)

where

ω3 = (dψ + cos θ1dφ1 + cos θ2dφ2) ∧ ω2,

ω2 =
1

2
(sin θ1dθ1 ∧ dφ1 + sin θ2dθ2 ∧ dφ2),

ω2 ∧ ω3 = 54Vol(T 1,1),

ω3 = −3

r
∗6 (dr ∧ ω2) . (6.5)

The action then becomes

S =
3π3(Mα′)2gs

4κ2
10

∫

d4xdr ∂rφ∂rφ(2r log r/rs + r(log r/r0)
2) + φ2 1

r
. (6.6)

Using the variable y = log r/rs, we then have

S =
3π3(Mα′)2gs

4κ2
10

∫

d4xdy ∂yφ∂yφ(2y + (y − y0)
2) + φ2. (6.7)

Note that in the small distance limit, this becomes the equation for a Randall-Sundrum

model with a constant mass φ-field, with

M3
5

g2
=

3π3(Mα′)2gs

κ2
10

y−2
0 ,

and m2 = y−2
0 (note that the dimensions are different). This is quite indicative: in the

Klebanov-Tseytlin throat the effective mass is smaller than 1, and moreover for branes in

the throat the separation will never exceed the inverse mass — so we do not expect a large

suppression.

Using the analysis for the solution of Green functions, we find no contact terms on the

brane, and the boundary condition is just that ∂yφ = 0 at the branes. We then find

χab = gagb
32

3M2

1

4y1 + 2(y1 − y0)2)

G̃<(ys)

G̃′
<(y1)

, (6.8)

where the hidden brane is placed at y1 = log(r1/rs). The homogeneous solutions can be

easily found numerically; a graph is given in figure 5. Again, the mixing is much larger

than might naively have been expected; the Klebanov-Tseytlin throat is comparable to the

RS model in the mR ≪ 1 limit. Once the backreaction of the fluxes becomes important,

one might expect an exponential damping of the propagation similar to the mR≫ 1 limit

of the RS model. Therefore in general warped throat configurations it is not possible to

place an upper or lower bound on the size of the kinetic mixing between branes: there may

indeed be an experimental signal to observe.
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Figure 5: Mixing on the conifold varying with distance of the hidden brane, y1 = log(r1/rs), up

to the mouth of the throat at y1 = 16. (M is the number of fractional D5 branes wrapped on a

compact S3 ⊂ T 1,1 at the tip of the throat.)

7. Conclusions

It is common lore that U(1)s are ubiquitous in string theory, and that almost all will

acquire masses. It is however natural to find massless hidden U(1)s in models with branes

wrapping cycles that do not intersect the branes supporting the standard model. This is a

typical situation for branes supported at singularities, which forms a major part of string

model building. Moreover in such scenarios it is natural for there to be hidden matter

charged under these hidden gauge groups. We have argued that it is therefore important

to consider whether these can kinetically mix with the photon of the standard model, since

then there is a real possibility of detection by current and future experiments.

Using conformal field theory and supergravity techniques we have calculated these

effects. The latter method can be used even when fluxes are included to stabilise the

moduli. Moreover, we have demonstrated that in general kinetic mixing is non-zero even if

all the U(1)s involved are anomaly free and therefore massless. This facilitates extremely

sensitive tests in a variety of current and near future low-energy experiments.

The size of the kinetic mixing is model-dependent. Yet, for generic parameter values,

it is often within reach of current and near future experiments. There is thus the real

possibility that an experimental signal will be observed soon that would give deep insights

into the particular string theory background upon which we may live. Alternatively, new

stronger bounds will crucially exclude many models. We believe that it is thus worthwhile

to examine future models for such fields and the kinetic mixing between them.

Towards model building, we constructed a simple toy example with exactly calculable

mixing and hidden matter, demonstrating the proof of our concept. The deficiencies of
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the toy can be ascribed to the toroidal background and the large branes filling it; “hiding”

the branes in such models is severely constrained, but this is certainly not an essential

feature of more general models. We thus believe that a search of more realistic models

with stabilised moduli and branes at singularities will reveal many promising candidates

for our scenario.
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A. Remarks on the D3-D3 system

We may wish to follow the procedure outlined in the section 2 for constructing a massless

U(1) field from two stacks of branes applied to the D3-D3 system, and start with two

stacks: one of two D3-branes, one of two D3-branes. We consider the compact space to

be a six-torus, but the discussion regarding the masses applies to any manifold. We then

split these into four stacks, giving four gauge fields Aα = {A1
a, A

2
a, A

1
b̄
, A2

b̄
}. Due to the

mutual supersymmetries preserved, there is only kinetic/mass mixing between the branes

and antibranes, not amongst themselves. However, a crucial difference between this system

and one of purely branes is that there are uncancelled NS-NS tadpoles, and thus we have

a non-zero contribution to the mass from the planar diagrams (with both vertex operators

on one boundary). The planar and non-panar masses are given by

m2
planar = tr(λi

aλ
i
a)
∑

j

tr(γj
b̄
)m2,

m2
non−planar = tr(λi

a)tr(λ
j
b̄
)m2, (A.1)

where m2 is given by equation (2.11). Thus we can write the Lagrangian as

L ⊃ 1

2
(Aµ)α(M)αβ(Aµ)β − 1

4g2
(Fµν)α(X )αβ(Fµν)β , (A.2)

where

M =











4m2 0 m2 m2

0 4m2 m2 m2

m2 m2 4m2 0

m2 m2 0 4m2











(A.3)

and

X =











1 0 −χ11 −χ12

0 1 −χ21 −χ22

−χ11 −χ21 1 0

−χ12 −χ22 0 1











. (A.4)
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Note that upon diagonalising M, we find no massless U(1)s; all four fields become massive,

with masses multiples of m2. Note also the presence of the diagonal mass terms from the

planar diagrams. This is a new feature present when we have broken supersymmetry, and

if we analyse the supergravity calculation we find that it arises from a dilaton tadpole.

This occurs because of the uncancelled NS-NS charges present.
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